首页> 外文OA文献 >Accelerated Cyclic Reduction: A Distributed-Memory Fast Solver for Structured Linear Systems
【2h】

Accelerated Cyclic Reduction: A Distributed-Memory Fast Solver for Structured Linear Systems

机译:加速循环缩减:分布式存储器快速求解器   结构化线性系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We present Accelerated Cyclic Reduction (ACR), a distributed-memory fastdirect solver for rank-compressible block tridiagonal linear systems arisingfrom the discretization of elliptic operators, developed here for threedimensions. Algorithmic synergies between Cyclic Reduction and hierarchicalmatrix arithmetic operations result in a solver that has $O(k~N \log N~(\log N+ k^2))$ arithmetic complexity and $O(k~N \log N)$ memory footprint, where $N$is the number of degrees of freedom and $k$ is the rank of a typicaloff-diagonal block, and which exhibits substantial concurrency. We provide abaseline for performance and applicability by comparing with the multifrontalmethod where hierarchical semi-separable matrices are used for compressing thefronts, and with algebraic multigrid. Over a set of large-scale ellipticsystems with features of nonsymmetry and indefiniteness, the robustness of thedirect solvers extends beyond that of the multigrid solver, and relative to themultifrontal approach ACR has lower or comparable execution time and memoryfootprint. ACR exhibits good strong and weak scaling in a distributed contextand, as with any direct solver, is advantageous for problems that require thesolution of multiple right-hand sides.
机译:我们提出了加速循环归约(ACR),这是一种由椭圆算子离散化产生的秩可压缩块三对角线性系统的分布式内存快速直接求解器,在这里针对三维进行了开发。循环归约和层次矩阵算术运算之间的算法协同作用导致求解器具有$ O(k〜N \ log N〜(\ log N + k ^ 2))$算术复杂度和$ O(k〜N \ log N + log N)$内存足迹,其中$ N $是自由度的数量,$ k $是典型的非对角线块的等级,并且表现出大量的并发性。通过与使用分层半可分离矩阵压缩前沿的多前沿方法以及代数多重网格进行比较,我们为性能和适用性提供了基准。在一组具有非对称性和不确定性特征的大规模椭圆系统上,直接求解器的鲁棒性超出了多网格求解器的鲁棒性,并且相对于多正面方法,ACR的执行时间或存储足迹更低。与任何直接求解器一样,ACR在分布式上下文中表现出良好的强和弱缩放,并且对于需要解决多个右侧问题的问题非常有利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号